

Development and Feasibility of a Kinect-Based Constraint-Induced Therapy Program in the Home Setting for Children With Unilateral Cerebral Palsy

台灣大學職能治療學系 陳顥齡(Hao-Ling Chen)副教授 動作科學暨輔助科技實驗室 Movement Science and Assistive Technology Lab

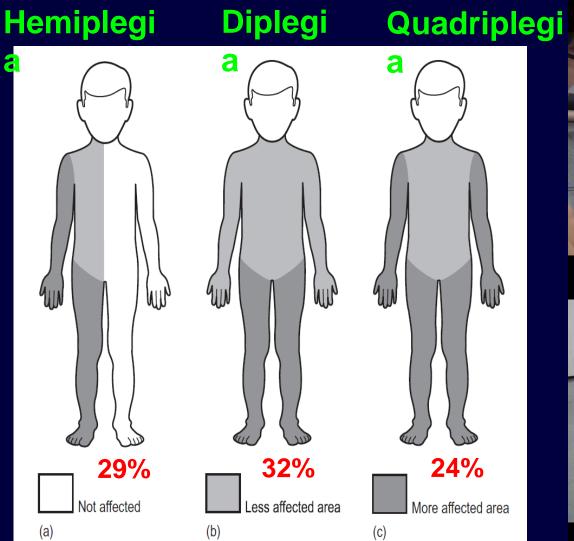
OPEN ACCESS

ORIGINAL RESEARCH published: 26 October 2021 doi: 10.3389/fbioe.2021.755506

Development and Feasibility of a Kinect-Based Constraint-Induced Therapy Program in the Home Setting for Children With Unilateral Cerebral Palsy

Hao-Ling Chen^{1,2}, Szu-Yu Lin², Chun-Fu Yeh², Ren-Yu Chen², Hsien-Hui Tang³, Shanq-Jang Ruan⁴ and Tien-Ni Wang^{1,2*}

¹Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan, ²School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan, ³Department of Industrial and Commercial Design, National Taiwan University of Science and Technology, Taipei, Taiwan, ⁴Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

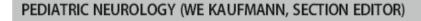

半側偏癱腦性麻痺孩童實證神經復健

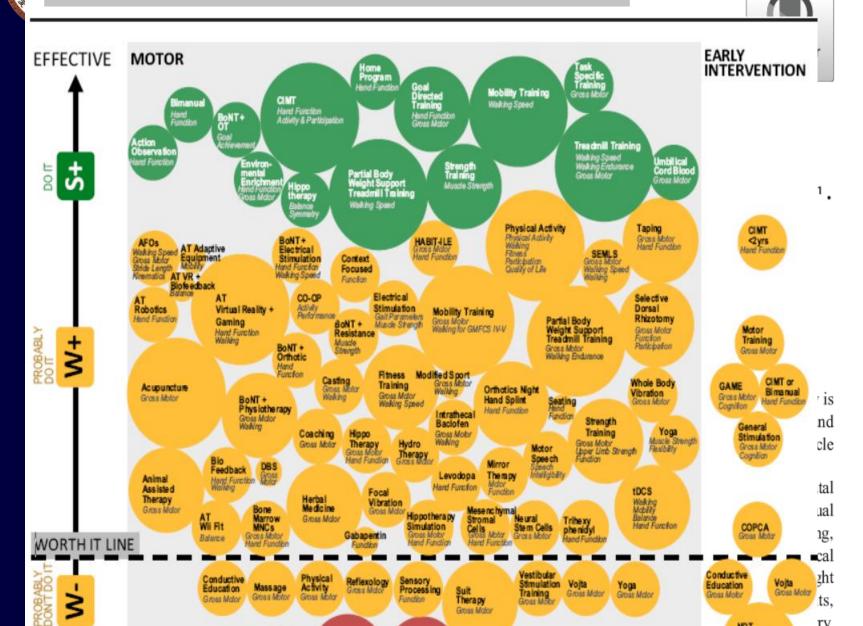
Cerebral Palsy

Neurorehabilitation

- Based on the theories of neural plasticity and motor learning
- Constraint-Induced Therapy (CIT)
 - Restraint of the less-affected upper limb (UL)
 - Intensive structured training of the affected UL
- Bimanual Intensive Training (BIT)
 - Bilateral coordination
 - Functional bimanual activities
 - Hand-Arm Bimanual Intensive Training (HABIT)

(Charles & Gorden, 2006; Andersen et al. 2013; Chen et al. 2014; Sakzewski et al., 2014)




Current Neurology and Neuroscience Reports (2020) 20: 3 https://doi.org/10.1007/s11910-020-1022-z

•

2020

TERAPY-ALIS

Disadvantage of CIT

Intensive protocol

 Motivation
 Labor intensity

 Restraint of less-affected UL

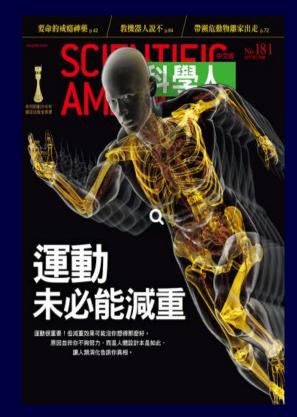
 Frustration

(Hart et al., 2005; Smania et al., 2009; Gilmore et al., 2010; Lin et al. 2011)

- Intensive protocol
 - Motivation
 - Labor intensity
- Rehabilitation-specific VR system vs. commercial VR system

(Harris and Reid, 2005; Tatla et al., 2013; Chen et al., 2014)

Purposes



- **Develop Kinect-based CIT** program for children with unilateral CP
- Feasibility study
 - Phase 1: Confirm CIT goals
 - Phase 2: Effectiveness (pilot study)

進行動作訓練同時也獲得樂趣,復健動機大為提升。

撰文/陳顥齡、唐玄輝、林思瑜、李婷玉

Research Team

Motor training goals
Restraint of less-affected UL
Intensive structured training of

Motor Training Goals

- Motor learning training theory
 - External focus
 - Feedback: visual and auditory
 - Intensive training: repetitive practice, random practice
- Shaping skill
- Personalized game difficulties
- User interface

Game design by motion capture sensor Contextual restraint

Feasibility Study

Phase 1

Participants

- Ten Unilateral CP
- 5-12 years old
- No excessive muscle tone (Modified Ashworth Scale ≤ 2 at any joint of the UL)
- No severe cognitive, visual and auditory disorders

Gameplay 20 minutes

- Achievement of the CITspecific design
 - Motion capture system: Vicon 13+
 - Kinect 2 sensor
- Children's perception of playing game
 - Self-developed questionnaire
 - Enjoyability, safety, challenge, acceptability and skill at the game (Hanna, 2004)

Results and Discussion

Achievement of the CIT-specific design

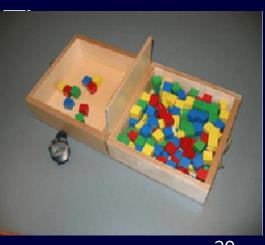
- Restraint of less-affected UL
- Intensive training of affected UL
 - Achieve an average of 72 repetitive grasps (range 54– 108 repetitions)
 - It is crucial to cause neural reorganization in the brain and improve the learning of motor and functional skills
- Children's experience
 - Positive and safe
 - Prefer Kinect-CIT over regular intervention (75%)

Feasibility Study

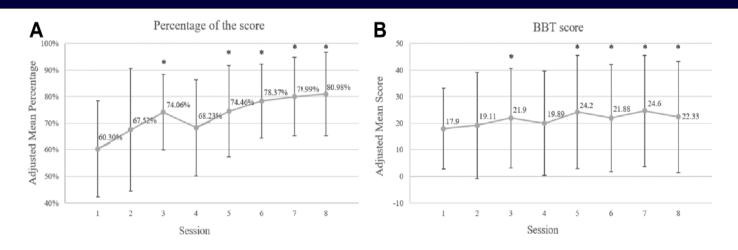
Phase 2

Participants

• Eight Unilateral CP


Receiving an 8 weeks (18 hours) Kinectbased CIT intervention

Potential Effectiveness


- Performance score recorded by Kinect system
 - Raw score/ total score
 - Harder difficulty lead to a higher maximal total score
- The Box and Block Test (BB
 - Evaluate manual function
 - 60 sec

Results and Discussion

FIGURE 3 | (A) Eight weeks of performance scores of the Kinect game and (B) outcomes of the BBT among children with unilateral CP over training sessions. * statistical significance of $p \le 0.05$ compared to the baseline.

Increased stable after 5 weeks of intervention
Decreased performance from 3 to 4 week

Adjust the game difficulty in the 4 week

Clinical Implication and Future Works

- Telerehabilitation
- Comparative effectiveness research
 - Therapist-based and Kinect-based CIT

Thank you for your attention