
Integrating Collaborative Intelligence into Brain Stereotactic Radiosurgery -a randomized multi-reader evaluation

Shao-Lun Lu 呂紹綸, MD, PhD

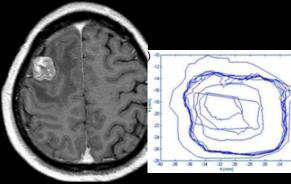
Department of Radiation Oncology, National Taiwan University Cancer Center

Brain metastases complicates 20-40% cancer patients

Increasing incidence with advances in systemic therapy

Whole brain radiotherapy

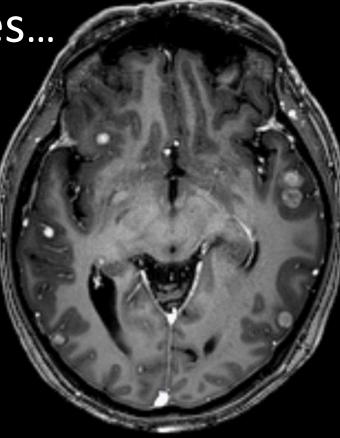
Stereotactic radiosurgery (SRS)


Contouring the brain tumor

Contouring brain metastases

Labor intensive

Inter-observer variability is large

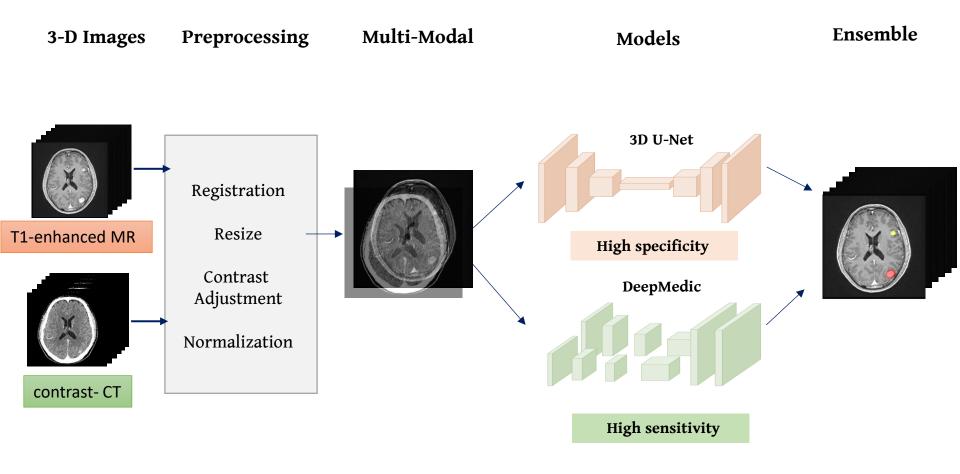


Sandström et al. Acta Oncol. 2018

Especially for multiple metastases...

Labor intensive

Inter-observer variability is large


Motivation Automated BM detection and segmentation for SRS

- 1. Tiny, punctate lesion High sensitivity
- 2. Limited imaging modalities (Enhanced T1 MR and CT) Low False positive
- 3. Clustered tumors **Precision delineation**
- 4. Rapid clinical flow Integration into daily practice

2008-2018 2 NS and 3 RadOnc CyberKnife[®] system with Multiplan[®] MR 2 scanners/ CT 2 scanners

Number of patients	638
Number of metastases	1877
Training/Validation/Testing	8:1:1 ratio with random split
patients with	
1 tumor	42
2 tumors	22
3 tumors	11
≥ 4 tumors (%)	25
Tumor Size (ml) (Median; Min-Max)	0.61 (Diameter ~ 1 cm); 0.002-59.306

State-of-the-art AI solution

• US patent granted

Oral Presentation at
 MICCAI 2019

 Oral Presentation at ASTRO 2019

Multimodal Volume-Aware Detection and Segmentation for Brain Metastases Radiosurgery

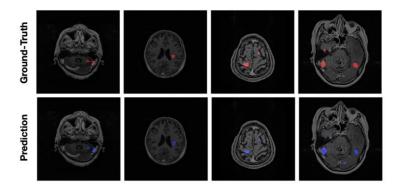
Szu-Yeu Hu¹, Wei-Hung Weng², Shao-Lun Lu³, Yueh-Hung Cheng⁴, Furen Xiao⁵, Feng-Ming Hsu³, and Jen-Tang Lu^{4(⊠)}

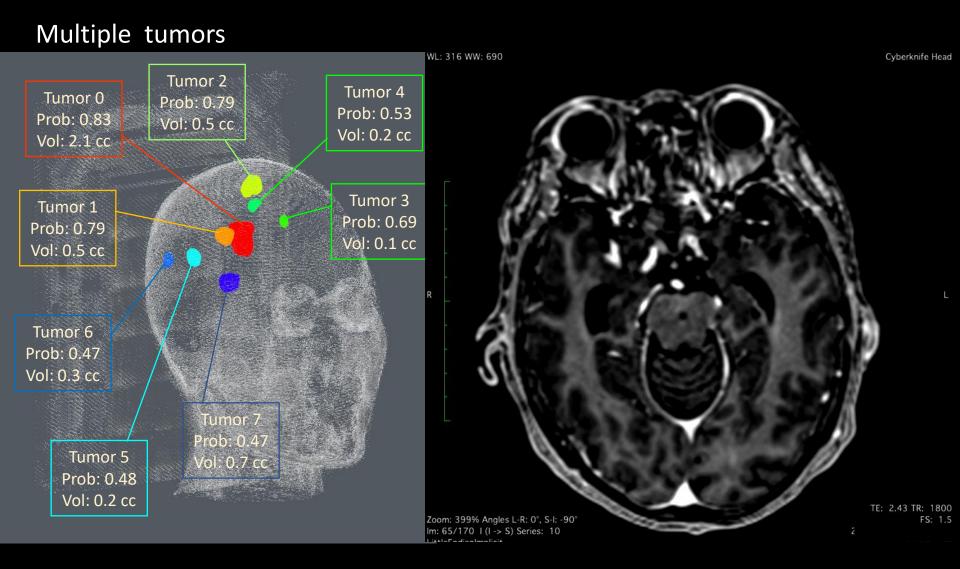
¹ Massachusetts General Hospital, Boston, MA, USA
 ² Massachusetts Institute of Technology, Cambridge, MA, USA
 ³ Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan

 ⁴ Vysioneer Inc., Cambridge, MA, USA
 jt@vysioneer.com

 ⁵ Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan

arXiv:1908.05418v1 [eess.IV]


Volume-Aware Dice Loss

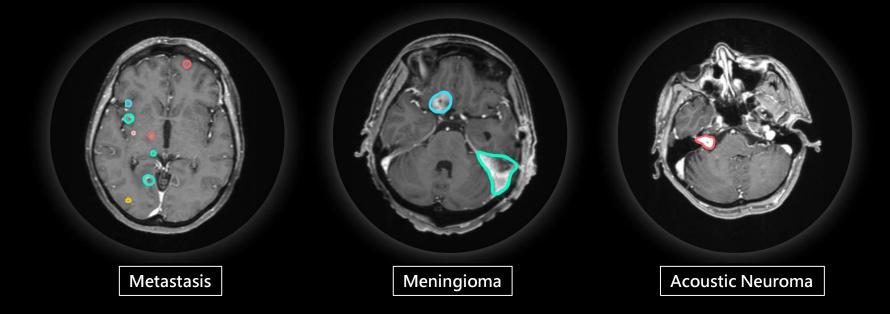

optimizing the overall segmentation using the information of lesion size. $\ell_{vol-dice}$

$$\ell_{\mathsf{vol-dice}}\left(\boldsymbol{g}, \boldsymbol{p} \mid W\right) = -rac{C \boldsymbol{g}^{\top} W \boldsymbol{p} + \epsilon}{\boldsymbol{p}^{\top} \boldsymbol{p} + \boldsymbol{g}^{\top} W \boldsymbol{g} + \epsilon},$$

Table 3. Model performance of different configurations of loss functions, image modalities, and neural network models. The values are represented as median (std).

Model	$\ell_{\text{vol-dice}}$	DSC	Precision	Recall
3D U-Net			0.689(0.001)	
DeepMedic			0.631(0.004)	
3D U-Net + DeepMedic		0.719 (0.004)	0.788 (0.002)	0.713(0.023)
3D U-Net + DeepMedic	1	0.740 (0.022)	0.779(0.010)	0.803 (0.001)

Performances


Model	Modality	Dice	FP / Sensitivity
DeepMedic	MR	0.625	3.344/0.900
Unet 3D	MR	0.699	0.609/0.709
Ensemble DeepMedic + Unet 3D	MR	0.723	0.484/0.752
Ensemble	MR + CT	0.761	0.594/0.787 (2.625/0.900)*
			*At a high consitivity operating point

Voxel-by-voxel AUC=0.99

*At a high-sensitivity operating point

VBrain: Al-empowered Brain Tumor Auto-contouring

Works for the 3 most common brain tumors (75+% cases in brain radiosurgery)

Clinicians do not need to change any routines to adopt to the new technology

Integration into clinical workflow

Inference time less than 2 minutes

			MultiPlan [®] System Load Fuse Contou	ur Align Plant Visualize	Plan QA Settings Help
				VOI Skin Spine Tracking Volume Ball-cu	
Start a New V	Vorkflow		VOI Opacity 0 100 E Depity VOI as overlay		VOI summary VOI summary I get Name I bumor bed Terget Volume (mm ²) 494.81
Patient ID					
Lee_1234567					
Example: Lee_1234	567				×
Submit					9
Patient ID	Status	Created At		P CI TA	Move Up Move Down Move to Top Move to Battom
Yeh_8658421	succeeded	2019-05-17T14:41:08+08:00			Dataset A Dataset B
Wang_21760505	succeeded	2019-05-17T14:42:03+08:00			
Lee_1234567	running	2019-05-17T14:44:27+08:00		3277	el ego (1200 1600 2400 3000 3000

A prospective reader study within the clinical scenario

Impact of AI-assisted brain tumor segmentation for SRS

- Inter-reader variability
- Accuracy
- Efficiency

Neuro-@ncology

for NeuroOncology

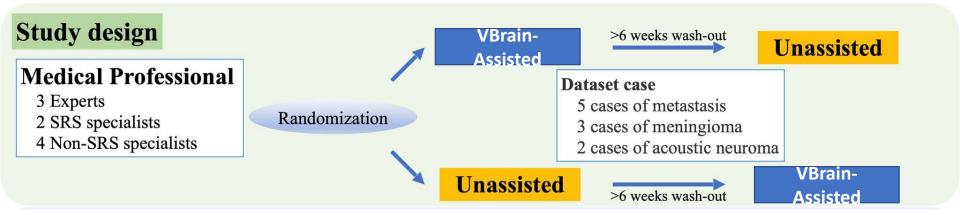
Randomized multi-reader evaluation of automated detection and segmentation of brain tumors in stereotactic radiosurgery with deep neural networks

Neuro-Oncology, noab071, https://doi.org/10.1093/neuonc/noab071

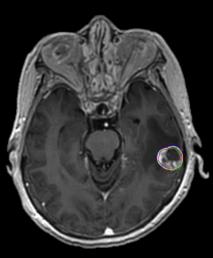
G
 Shao-Lun Lu, Fu-Ren Xiao, Jason Chia-Hsien Cheng, Wen-Chi Yang, Yueh-Hung Cheng,
 Yu-Cheng Chang, Jhih-Yuan Lin, Chih-Hung Liang, Jen-Tang Lu, Ya-Fang Chen ➡,
 Feng-Ming Hsu ➡

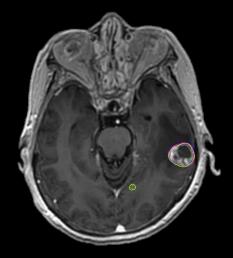
Author Notes

Neuro-Oncology, Volume 23, Issue 9, September 2021, Pages 1560–1568, https://doi.org/10.1093/neuonc/noab071



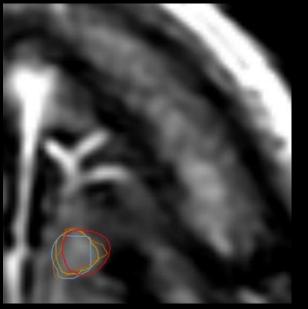
Reader Study

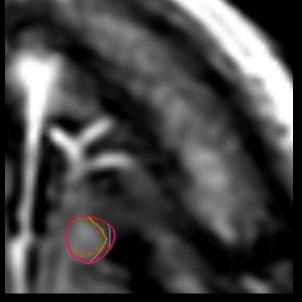

$OXFORD Q \Theta \equiv$ Neuro-@ncology SN(W) = SN(W)Society for NeuroOncology


Randomized multi-reader evaluation of automated detection and segmentation of brain tumors in stereotactic radiosurgery with deep neural networks

Neuro-Oncology, noab071, https://doi.org/10.1093/neuonc/noab071 Published: 22 March 2021 Article history ▼

Increase sensitivity

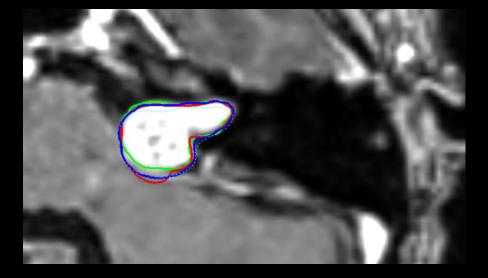



Without Al

With AI

Lu, Shao-Lun, et al. "Randomized Multi-Reader Evaluation of Automated Detection and Segmentation of Brain Tumors in Stereotactic Radiosurgery with Deep Neural Networks." *Neuro-Oncology* (2021).

Reduce inter-reader variability

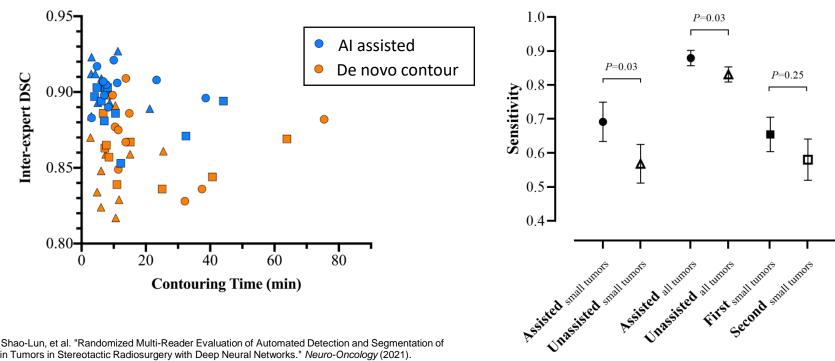


Without AI

With Al

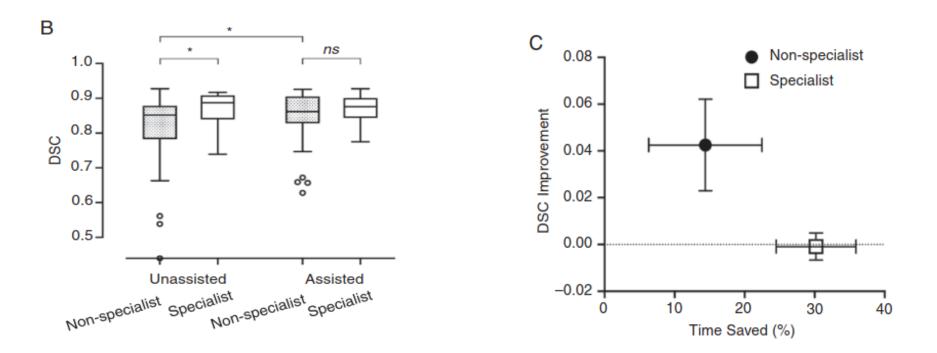
Lu, Shao-Lun, et al. "Randomized Multi-Reader Evaluation of Automated Detection and Segmentation of Brain Tumors in Stereotactic Radiosurgery with Deep Neural Networks." *Neuro-Oncology* (2021).

Reduce inter-reader variability


Without Al

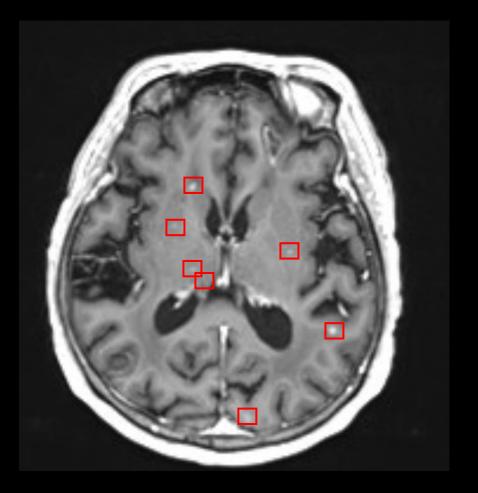
With AI

Collaborative intelligence SRS


Reduce inter-reader variability by 50% Reduce Contouring Time by 31%

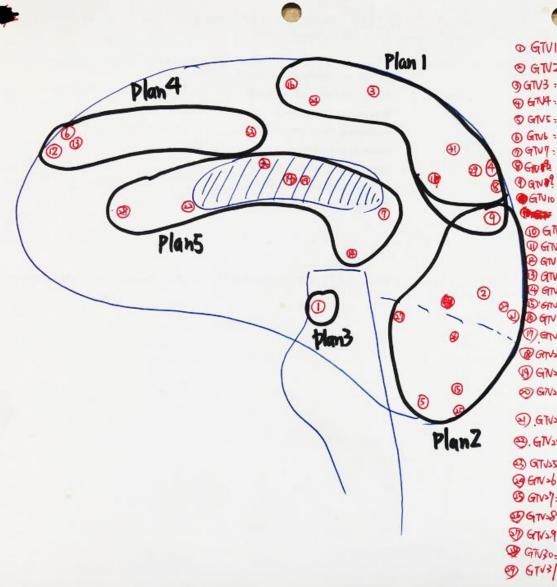
Improve Sensitivity by 12%

Lu, Shao-Lun, et al. "Randomized Multi-Reader Evaluation of Automated Detection and Segmentation of Brain Tumors in Stereotactic Radiosurgery with Deep Neural Networks." Neuro-Oncology (2021).


Collaborative intelligence SRS

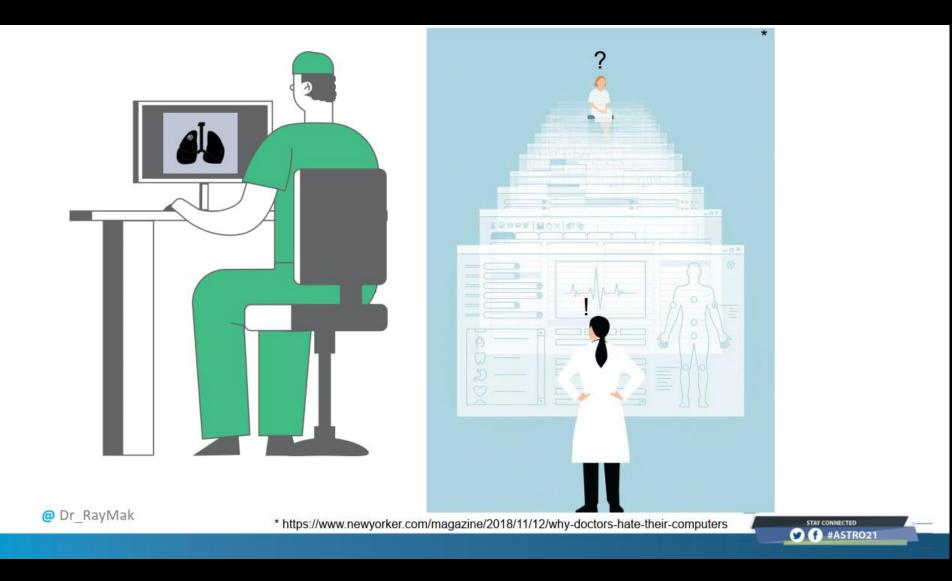
Lu, Shao-Lun, et al. "Randomized Multi-Reader Evaluation of Automated Detection and Segmentation of Brain Tumors in Stereotactic Radiosurgery with Deep Neural Networks." *Neuro-Oncology* (2021).

Multi-mets after previous SRS


70 y/o woman SCLC, s/p WBRT (2020/1), Brain met recurrence in 2021/7 ECOG 2 s/p CK SRS 20 Gy (n=13) **Brain progression**

Multi-mets after previous SRS

No any target missed



⊕ GTVI : Brainstem (No.103)
⊕ GTV2 : L4 occipital (No.105)
⊕ GTV3 : R6 parietal (No.104)
⊕ GTV4 : R6 parietal (No.104)
⊕ GTV5 : L4 (coreballar (No.66))
⊕ GTV5 : L4 frontal (No.105)
⊕ GTV7 : L4 temporal (No.105)
⊕ GTV7 : L4 coccipital (No.105)
⊕ GTV7 : L4 coccipital (No.105)
⊕ GTV7 : R6 occipital (No.105)
⊕ GTV10 : 11 2 : ARE

lesions

@ GTV12: R4 frontal (No. 138) DGTV13: 1/2 LA frontal (No.133) @ GTV14 . LE thalamus (No. 116) B) GTV15=14 (orebellar (NO.82) P GTV16: LE posterior frontal (No. 162) D'GTU 17 = Rt pavietal (No. 136) D GTV 18 = Rt lateral vontricle (No. 133) (1) GTV19 = RE faith (No. 132). @GTV20 = RG Carebellar (Na109). (GN2 | = Rt corebellar (No. 101). @ Gives : RE lateral ventricle (No. 123), (putamen) (No.161) GTV3: LE Frontal (No.161) O. GTV24: RE posterior frontal (No. 158). 3) GTUS = 14 Carebellar (No.75) @GN>6: Lt cerebellar (No.93) B GTV37: Lt cerebellar (H= 90). @GTV-S= RE frontal (No. 134) @ GTV39: RE parietal (No. 143). @ GTV30= Rt foral lateral ventricle (No. 137) @ GTV3/ Rt parietal (No. 149).

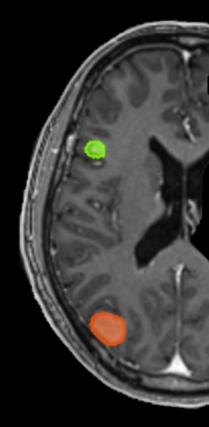
Plan Plan 1: GTV3-4-8-9-16-17-24-29-1 (8Ls) (plan) => Plan1(82s)_ 7.5c_Fixed Tx= 90mins Planz: GTV2-5-9-15-20-21-25-26-29 (915) =>Planz(9Ls)_7.51015c_IRIS. Plan3 = GTVI (Plan) => Plan3_GTVI_5c_Fixed Tx= 34mi Plant: 611/6-12-13-23 (46) =>Plat_s-DK_Fixed 1945) => Plan4(4Ls)-5=73c -Freed Plan 5: GTV 7-14-18-19-22-28-3 (7LS) (Plan) ≥ PlanS(7LS) -7.5C - IRIS € Tx = 83min

A premise: Artificial intelligence will enable us to be more patient-centered, more **present**...

Ray Mak, MD

MD Øf

#ASTRO2

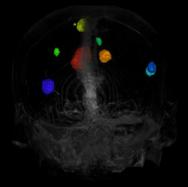

Take Home Messages

Collaborative Intelligence

Produces reliable contouring for brain SRS
↓ mundane workload
↓ task difficulty
↑ time with patients

Integration matters

starting from clinical need Patient-centered care!



Thank you

Shao-Lun Lu, MD, PhD shaolunlu@ntu.edu.tw

