勵翔獎科學論壇

入選者

高雄長庚徐美欣醫師

Original Article

Therapeutic hypothermia for pediatric refractory status epilepticus May Ameliorate post-status epilepticus epilepsy

Mei-Hsin Hsu ^{b,1}, Hsuan-Chang Kuo ^{b,d,1}, Jainn-Jim Lin ^{c,e}, Ming-Yi Chou ^a, Ying-Jui Lin ^{b,*}, Pi-Lien Hung ^{a,*}

Methods

• We reviewed the medical records of all patients with RSE/SRSE

who were admitted to the Pediatric Intensive Care Unit (PICU) of the Department of Pediatrics at two medical referral centers,

- Taoyuan Chang Gung Children's hospital
- Kaohsiung Chang Gung Memorial Hospital

between January 2014 and December 2017

• We collected clinical data with diagnosis of RSE/SRSE

Methods

Brain hypothermia therapy

Imataka G, et al. Eur Rev Med Pharmacol Sci. 2014

Our protocol

This protocol applies for patients with status epilepticus or suspection of acute encephalitis / encephalopathy

- 1. Admission to PICU with intensive critical care
- 2. Assure the patient has the following supportive equipment before hypothermia therapy:
 - Endotracheal intubation (RSI, Rapid Sequence Intubation) with artificial ventilation to keep PCO2 at 35 to 40 mmHg (do not over-ventilate).
 - b. If possible, set up arterial catheter to monitor arterial pressure
 - c. If possible, set up CVP catheter to assess fluid volume. Goal CVP 6-10 mmHg
- 3. Asses the patient's clinical status before initiating hypothermia therapy
 - a. Obtain continuous core temperature via esophageal probe
 - b. Assess baseline 12 Lead EKG
 - c. Check ABG, CBC/DC, PT/APTT, Fibrinogen, D-Dimer, BUN/Cr, Na/K/Ca/Cl/P/Mg, AST, Bil (T/D), albumin, CRP, lactate, amylase, lipase, cardiac enzyme, CPK isoenzyme
- Sedate patient with midazolam continuous infusion [2-20mcg/kg/min] and anti-shivering drug as Rocuronium [6-12mcg/kg/min].

- 5. Intracranial pressure is controlled by the followings:
 - a. Fluid infusion between 80 and 100 ml/kg/day. Fluid control must not be reduced more than necessary in order to maintain blood pressure and cerebral circulation.
 - b. Maintain head of bed at 30 degrees.
 - c. Submitted hypertonic 3% NaCl
- 6. Steroid pulse therapy: methylprednisolone 30 mg/kg over three hours for three days
- 7. Administer esomeprazole or other PPI drugs to prevent stress ulcer.

8. Cooling phase:

- a. Brain hypothermia therapy uses Arctic Sun cooling system, to induce target body temperature (direct esophageal temperature 34.0 to 35.0 degrees) within three hours of onset.
- b. Anti-seizure medication: midazolam, 2 to 20 mcg/kg/min or Thiamylal Sodium, 2-5 mg/kg/hr.
- Sedation depth should be confirmed by portable electroencephalograph (Nicolet) as reaching suppression burst within six hours of beginning therapy.
- 9. Cooling period:
 - a. Target temperature to be maintained for 48 hours (or maximum 72 hours).
 - Patients achieving a positive sedation depth should reduce the anti-seizure medication dose prior to rewarming
 - c. [Caution] If spikes remain with suppression bursts, consider complete suppression
 - d. Manage electrolyte abnormalities and blood glucose.
 - e. Administer antibiotics appropriate.
- 10. Rewarming period
 - a. Rewarming is implemented at a pace of 0.05 degrees per hour.
 - When the body temperature backs up to 36.0 degrees, we will keep body temperature at 36.0 degrees for 24 hours to prevent rebounding IICP.

Patient data

Table 1 Clinical information of patients underwent therapeutic hypothermia.							
	Age at onset/Sex	Etiology for SE	TH Target temp (°C)	TH Duration (hrs)	Complications of TH		
Patient A	13yo/M	FIRES	35	72	Electrolyte imbalance, Bradycardia		
Patient B	13yo/M	FIRES	34.5	72	Bradycardia, Infection		
Patient C	8yo/M	Dravet syndrome	35	48	Electrolyte imbalance, Infection		
Patient D	8 mo/M	TBI post minor neurosurgery	34	72	Electrolyte imbalance		
Patient E	6 mo/M	TBI post minor neurosurgery	34	72	Electrolye imbalance, Coagulopathy		
Patient F	2 mo/M	TBI post minor neurosurgery	35	48	Electrolye imbalance, Coagulopathy		
Patient G	8yo/M	FIRES	34	120	Electrolye imbalance		
Patient H	4yo/M	FIRES	35	72	Electrolye imbalance		
Patient I	6yo/F	FIRES	35	48	Electrolye imbalance		
Patient J	6yo/F	FIRES	35	48	Electrolye imbalance		
Patient K	10yo/M	FIRES	33	120	Electrolye imbalance, Tachycardia		

control-group.						
	$\begin{array}{l} \text{Treatment} \\ \text{Group (n = 11)} \end{array}$	$\begin{array}{c} \text{Control} \\ \text{group (n = 12)} \end{array}$	p value			
Age (yrs; median (IQR))	6.5(9.8)	9(6.25)	0.30			
Sex (M/F)	9/2	7/5	0.092			
RSE duration (hrs; median (IQR))	24(40)	96(90)	0.023*			
ICU stay (days; median (IQR))	30(42)	30.5(30.25)	0.666			
AEDs kinds (median (IQR))	5(3)	3(1.5)	0.086			
GOS score (median (IQR))	4(2)	3(0.75)	0.01*			
Chronic Epilepsy	5(45)	12(100)	0.005**			

 $\hat{}$

TH group showed significantly shorter RSE durations

Results

RSE duration

• TH had significantly shorter RSE duration

AEDs kinds

• No significant difference

Length of ICU stay

• No significant difference

Outcome measurement

• no significant difference

 The etiology for RSE/SRSE was the pivotal predictor for RSE/SRSE outcome

低溫治療的壞處?!

- The complications during and after TH were all transient and manageable during ICU routine care.
- The electrolytes abnormalities were our major complications.

Conclusions

- Therapeutic hypothermia by cooling blanket is effective in shorten seizure duration during pediatric RSE/SRSE in our study.
- There were less unmanagable complications during therapeutic hypothermia.

Conclusions

- It seemed safety in the use of pediatric RSE/SRSE group.
- Further prospective study of pediatric RSE/SRSE underwent therapeutic hypothermia with suitable controlled cases were needed to have more persuasive results.

