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Abstract
Background: Congenital anomalies (CAs) with or without intellectual disability 
(ID)/developmental delay (DD) comprise a heterogeneous spectrum of diseases 
that affect approximately 3% of live births worldwide. Recently, whole-exome se-
quencing (WES) demonstrated the highly heterogeneous genetic causes of CAs. 
The purpose of this study was to evaluate a referral system to increase the yield 
of WES for CAs.
Methods: From August 2018 to July 2019, patients with CAs, with or without ID/
DD, after excluding gross chromosomal aberrations, were referred to geneticists 
in two medical centers. Variant prioritization was conducted with an AI-assisted 
tool for whole exomes or a CA-related gene panel.
Results: Forty patients (27 males and 13 females) with CAs were enrolled in the 
study with a mean age of 4.71 years (range, 0.01–18.2). Pathogenic variants in 14 
genes were discovered in 16 patients (three patients with CHD7 and 13 patients 
with one gene each of ATP6V1B2, TAF6, COL4A3BP, ANKH, BMP2, SMARCA4, 
CUL4B, PGAP3, SOX11, FBN2, PTPN11, SOS1, or PROKR2), with a positive diag-
nostic rate of 40%. Among the 16 positive cases, 13 (81%) also had ID/DD. The in-
heritance was autosomal dominant in 13 (81%), autosomal recessive in two (13%), 
and X-linked in one (6%). Only five patients received a correct clinical diagnosis 
before WES. The analyses of patients with a negative genetic diagnosis revealed 
a phenotype and gene mutation load similar to those of the positive-finding pa-
tients but with a lower percentage of ID/DD.
Conclusions: The careful selection of patients by experienced geneticists and the 
exclusion of chromosomal aberrations raises the positive rate of the molecular 
diagnosis for CAs to 40%. However, more than half of the patients with CAs still 
do not have a genetic diagnosis by current technologies.
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1   |   INTRODUCTION

Congenital anomalies (CAs) with or without intellectual 
disability (ID)/developmental delay (DD) comprise a hetero-
geneous spectrum of diseases (Centers for Disease Control 
and Prevention, 2022). CAs, such as hearing impairments, 
occur during intrauterine life and can be identified either 
at birth or later in life (World Health Organization, 2022). 
CAs affect approximately 3% of newborn babies worldwide. 
The cause of CAs can be divided into genetic and nonge-
netic causes. Nongenetic causes include maternal drug 
abuse during pregnancy, prenatal infection, birth compli-
cations, extreme malnutrition, and environmental factors 
(Grayton et al., 2012). Approximately, a quarter of CAs have 
a genetic cause; the most common genetic causes are single 
gene disorders and chromosome aberrations. Chromosome 
aberrations represent a major cause of CAs with or with-
out neurodevelopmental disorders (Grayton et al.,  2012; 
Menten et al., 2006). ID is defined as significant limitations 
in both intellectual functioning and adaptive behavior that 
originate before the age of 18, according to the American 
Association on Intellectual and Developmental Disabilities 
(Tassé et al.,  2013). The prevalence of ID is estimated to 
be 1%–3% in the general population worldwide (Maulik 
et al., 2011). The etiology of ID is also heterogeneous and 
has been associated with chromosomal aberrations, sin-
gle gene disorders, and CAs (Moeschler,  2008; Roselló 
et al., 2014; Shaffer, 2005). When children are too young to 
be evaluated for intelligence, we describe the impairment in 
physical, learning, language, or behavior areas as DD.

The diagnostic yield of various genetic approaches 
in patients with unexplained developmental delay or 
mental retardation is not high (Rauch et al.,  2006). 
Recently, whole-exome sequencing (WES) was used to 
capture and sequence all coding regions. These regions 
include approximately 180,000 exons, which is 1%–2% 
of the human genome (Choi et al.,  2009). The exons 
contain 85% of disease-causing mutations (Biesecker & 
Green, 2014). WES is useful to identify variants in known 
disease-associated genes and to discover novel disease-
causing genes in highly genetically heterogeneous 
disorders, including CAs/ID/DD. In the Deciphering 
Developmental Disorders (DDD) study, WES and mi-
croarray analyses were performed for more than 10,000 
children with undiagnosed developmental disorders 
(with recruitment criteria of severe undiagnosed neu-
rodevelopmental disorder and/or congenital anomalies, 

abnormal growth parameters, dysmorphic features, and 
unusual behavioral phenotypes), and the diagnostic 
yield was 27% (Wright et al.,  2015). One WES study of 
127 patients affected with ID and/or DD found patho-
genic or likely pathogenic genetic variants in 27% of pa-
tients (Bowling et al., 2017). In a cohort from Hong Kong 
that included 102 families with suspicious monogenic 
disorders, 31% obtained a molecular diagnosis by WES 
(Chung et al., 2020). However, because of the high cost 
and variable yield, the clinical application of WES for 
CAs/ID/DD is still limited. The purpose of this study was 
to evaluate a referral system to increase the yield of WES 
for CAs in East Asia population.

2   |   MATERIALS AND METHODS

2.1  |  Patients

During the period from August 2018 to July 2019, pa-
tients with CAs/ID/DD were referred to National Taiwan 
University Hospital and E-Da Hospital for molecular 
diagnosis. The medical history that was collected in-
cluded prenatal/birth history, family history with three-
generation pedigree, congenital anomaly features, brain 
imaging, electroencephalography, a metabolic survey, 
and a complete cognitive evaluation. This study was ap-
proved by the Institutional Review Board of both National 
Taiwan University Hospital and E-Da Hospital. Written 
informed consent was obtained from the parents or guard-
ians of all patients. The presence of chromosomal aber-
ration was either excluded or not suspected according to 
clinical presentation.

2.2  |  Exome sequencing

Genomic DNA was extracted from peripheral blood leu-
kocytes. Exome enrichment library preparation was car-
ried out with an Illumina TruSeq® library preparation kit 
(Illumina, Inc., San Diego, CA, USA), and sequencing 
was conducted on a HiSeq4000 or NovaSeq6000 machine 
(Illumina, Inc.). Sequences were aligned to the human 
reference genome build (hg38) followed by variant calling 
according to the GATK 4.0 best practice pipeline. Copy 
number variation analysis was conducted with gCNV-
caller (GATK).

K E Y W O R D S

chromosomal aberration, developmental delay, intellectual disability, multiple congenital 
anomalies, whole-exome sequencing
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2.3  |  Variant prioritization

Variants with a heterozygous percentage ≥20% were first 
annotated by ANNOVAR (Wang et al.,  2010). Allele fre-
quencies were obtained from the 1000 Genomes Project 
(www.1000g​enomes.org), GnomAD database (gnomad.
broad​insti​tute.org), and Taiwan Biobank. Functional 
prediction was conducted in multiple ways, including 
Polyphen2 (http://genet​ics.bwh.harva​rd.edu/pph2/), SIFT 
(http://sift.jcvi.org/), and SpliceAI (Illumina). The sig-
nificance of variants was obtained from both the Human 
Gene Mutation Database (HGMD, www.hgmd.cf.ac.uk) 
and ClinVar (Landrum et al.,  2014). A customized fil-
ter was applied to multiple parameters, including quality 
score, allele frequency, severity of variant, and inheritance. 
Candidate genes were searched using Phenomizer (compb​
io.chari​te.de/phenomizer/) by the Human Phenotype 
Ontology (HPO) terms. Searching was also conducted 
using an in-house developed AI-assisted variant prioritizer 
by user-defined keywords (Wu et al., 2019). Variants were 
interpreted by the ACMG guidelines (Rehm et al., 2013) ei-
ther manually or with the help of Varsome (https://varso​
me.com/).

2.4  |  Mutation load analysis

Mutation load analysis, defined as the number of del-
eterious variants, was performed for patients with either 
positive or negative molecular findings. Variants with 
VCF files were filtered according to the following rules. 
Variants in intronic regions, except for splice junctions, 
were excluded. Variants predicted as not damaging by 
both SIFT and Polyphen2 or predicted not damaging 
by less than half of the 13 prediction tools included in 
ANNOVAR (SIFT, PolyPhen2 HDIV, PolyPhen2 HVAR, 
LRT, MutationTaster, MutationAssessor, FATHMM, 
PROVEAN, MetaSVM, MetaLR, M-CAP, fathmm-MKL, 
and CADD) were excluded. The maximal minor allele fre-
quency of the variant from ExAC, GnomAD, and Taiwan 
Biobank must be lower than 0.02. The remaining deleteri-
ous variants were calculated. A hypothetical gene panel 
for MCAs with a total of 3025 genes exported from the 
human phenotype ontology (HPO) and collected from 
previous literatures was also tested both for the diagnosis 
and for the evaluation of the mutation load as the same al-
gorithm as described above. The variant lists from two fil-
tering algorithm were further separated into two groups, 
respectively, the patients with positive or negative find-
ings. The top frequent gene variants were reviewed. We 
also compared the mutation loads between the patients 
with or without ID/DD.

2.5  |  Statistics

The comparison of the presence of ID/DD employed the 
chi-square test, and the comparison for mutation load em-
ployed the t test with tools from Excel.

3   |   RESULTS

3.1  |  Demographic features

A total of 40 patients were enrolled in the study, including 
27 males and 13 females. These patients had a mean age of 
4.71 years (range: 0.01–18.2). Their clinical diagnoses in-
cluded CHARGE syndrome, Cornelia de Lange syndrome, 
Smith–Lemli–Opitz syndrome, Paget disease/McCune–
Albright syndrome, Noonan syndrome, Kallmann syn-
drome, etc. Their associated CAs included congenital 
heart disease, hearing impairment, nail dysplasia, preau-
ricular skin tag, facial dysmorphism, cleft palate, hemiver-
tebrae, scoliosis, camptodactyly, syndactyly, etc.

3.2  |  Genetic outcome

Disease-causing variants in 14 genes were identified in 
these 16 patients, with a diagnostic rate of 40% (Table 1). 
The inheritance modes were autosomal dominant in 13 
patients (81%), autosomal recessive in two (13%), and X-
linked in one (6%). The involved genes included three 
patients with CHD7 and 13 patients with one gene, each 
of ATP6V1B2 (deafness, congenital, with onychodys-
trophy, autosomal dominant), TAF6 (Alazami-Yuan 
syndrome), COL4A3BP (mental retardation, autosomal-
dominant 34), ANKH (craniometaphyseal dysplasia), 
BMP2 (short stature, facial dysmorphism, and skel-
etal anomalies with or without cardiac anomalies), 
SMARCA4 (Coffin–Siris syndrome 4), CUL4B (mental 
retardation, X-linked, syndromic 15, Cabezas type), 
PGAP3 (hyperphosphatasia with mental retardation 
syndrome 4), SOX11 (Coffin–Siris syndrome 9), FBN2 
(contractural arachnodactyly, congenital), PTPN11 
(Noonan syndrome 1), SOS1 (Noonan syndrome 4), 
and PROKR2 (hypogonadotropic hypogonadism 3 with 
or without anosmia). Thirteen of the 16 patients (81%) 
with a molecular diagnosis had ID/DD. Chromosomal 
aberration was excluded in 11 patients by karyotyping 
and/or array CGH and in two patients by noninvasive 
prenatal testing. It was not suspected in the other three 
patients. Copy number analysis by gCNVcaller did 
not detect clinically significant CNVs in any of the 40 
patients.
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3.3  |  Statistical analysis

We tried to analyze the differences between patients 
with a positive (n  =  16) or negative (n  =  24) molecu-
lar diagnosis. The presence of ID/DD was higher in the 
positive group (13 out of 16, 81%) than in the negative 
(13 out of 24, 54%) groups (p < 0.05). We then calculated 
the mutation load. The number of deleterious variants 
was not different (p = 0.28) between the positive group 
(229 per person) and the negative group (274 per per-
son). Nine of the 10 genes with the highest number of 
deleterious variants were identical between the two 
groups. Interestingly, in the top 50 genes in the muta-
tion load analysis, eight genes in the negative group and 
seven genes in the positive group were related to autism 
spectrum disorder (ASD). However, there was no differ-
ence between the two groups.

4   |   DISCUSSION

This study of WES analysis for patients with CAs/
ID/DD resulted in a higher diagnostic rate, 40%, than 
most previous studies (Bowling et al.,  2017; Chung 
et al.,  2020; Wright et al.,  2015). The success of this 
study could be attributed to the referral system, the 
exclusion of chromosomal aberration, and a high-
performance variant prioritizer. The current AI-
assisted variant prioritizer was trained by both local 
data and databases. It was updated regularly and 
was successfully applied to our previous studies (Wu 
et al., 2019). We also relied on the scoring system based 
on different prediction tools. In the medical centers 
where our cases were recruited, doctors including 
pediatrician and pediatric surgeon were very keen to 
even subtle clinical manifestations and would always 
refer patients to geneticists when etiologies of CAs/ID/
DD were considered to be of genetic causes. The evalu-
ation of patients by an experienced geneticist before 
ordering WES should be an effective way to increase 
the diagnostic rate of WES. The exclusion of chromo-
somal aberrations by karyotyping, an array CGH or a 
clinical geneticist should increase the positive rate in 
this study. However, because of the rapid development 
of CNV analysis for WES (Gabrielaite et al., 2021) and 
the continuous decrease in sequencing cost, the exclu-
sion of chromosomal aberrations before ordering WES 
may not be necessary in the future.

We compared the previous clinical diagnoses and 
current molecular diagnoses of 16 patients with a pos-
itive diagnosis. We found that only five patients had a 
correct clinical diagnosis before testing, including the 
three patients with CHARGE syndrome and the two 

patients with Noonan syndrome. These are two well-
known diseases that both have characteristic CAs or 
facial dysmorphism. The other 11 patients, all with dif-
ferent diagnoses, had rare and heterogeneous diseases 
that are unlikely to be diagnosed clinically. Therefore, 
our data demonstrate the importance of establishing a 
molecular diagnosis for patients with CAs/ID/DD. A re-
cent review supports the clinical utility and desirable ef-
fects of exome or genome sequencing on the active and 
long-term clinical management of patients with CAs/
ID/DD and recommends that sequencing be considered 
a first- or second-tier test for patients with CAs/ID/DD 
(Manickam et al., 2021).

There were 24 patients (60%) who did not have a mo-
lecular diagnosis after WES analysis. Among them, five 
patients were suspected to have VACTERL association. 
Although the genetic etiologies of VACTERL association 
have recently emerged (Kolvenbach et al.,  2021), most 
of the cases still do not have a definite molecular cause. 
There was no significant difference between the positive 
and negative groups in mutation load, which was calcu-
lated by counting the deleterious variants in all genes. 
Mutation load is a valuable index in cancer because of 
defects in DNA repair, which does not occur in CAs or 
ID/DD. We have also tried to narrow the scope of the 
analysis. However, we could not find a published gene 
panel that covered the 14 genes identified in this study. 
Nevertheless, our analysis did demonstrate the preva-
lence of deleterious variants in a large number of ASD-
related genes, which could explain the complexity and 
high prevalence of ID/DD in humans. Interestingly, the 
negative finding group did have a lower percentage of 
ID/DD, which might suggest a lower genetic effect in 
their etiologies.

The major limitation of this study is the small case 
number compared to the previous cohorts, so the discov-
ery of new diseases or the comparison of the prevalence 
of specific diseases are impossible. However, our study 
did support our approaches for the molecular diagnosis of 
CAs/ID/DD, from the patient referral system to the bioin-
formatics workflow. This study also did not involve chro-
mosome structure variation (SV) analysis. SVs can cause 
both chromosomal aberrations or single gene diseases, 
which may explain a portion of the patients with negative 
molecular diagnosis.

In conclusion, this study demonstrates that WES is 
beneficial for identifying the etiology for patients with 
CAs/ID/DD in East Asia population.
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